If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+2n-14.66=0
a = 1; b = 2; c = -14.66;
Δ = b2-4ac
Δ = 22-4·1·(-14.66)
Δ = 62.64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-\sqrt{62.64}}{2*1}=\frac{-2-\sqrt{62.64}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+\sqrt{62.64}}{2*1}=\frac{-2+\sqrt{62.64}}{2} $
| 30000.0.08x=50000 | | 19f=-15+18f | | 2(v-8)+5=9 | | 30000*0.08x=50000 | | 30,000*0.08x=50,000 | | 18x-38+70=360 | | -a^2+a-6=0 | | -7q+16=-8q | | m/2+5=306 | | 4x-11+13+43+7x+93=180 | | 2(q+5)=16 | | 3(u-12)-8=7 | | 8m^2+8m-96=0 | | -17q+16q=-8 | | 9x+65+3x+40+3x+40=180 | | p-9/3=3 | | 8x-1=x3+4x+3 | | X^2+x2+2=0 | | -2(z-14)=-2 | | 2x+55=83 | | 9u-12=-4+13u | | q+7q=8 | | |4x-5|+2x=1 | | k^2/25-6=-2 | | -12b+18=-6b | | y=-9/5+9/2 | | 9t+12=6t | | 17d+14=19d | | 5-5/3k=1+k | | k-16/4=1 | | 10x-5=7x+3+74 | | 5v-11v=-12 |